Analysis 1, Summer 2023

List 5

Increasing, decreasing, critical points, absolute extremes

113. (a) For what value(s) of x does $x^3 - 18x^2 = 0$? x = 0, x = 18

(b) For what value(s) of x does $3x^2 - 36x = 0$? x = 0, x = 12

(c) For what value(s) of x does 6x - 36 = 0? x = 6

```
A number c is a critical point of f(x) if either f'(c) does not exist or f'(c) = 0.
```

- If f'(a) > 0 then f is **increasing** at x = a.
- If f'(a) < 0 then f is **decreasing** at x = a.
- 114. What are the critical points of $x^3 18x^2$? x = 0, x = 12
- 115. Find all the critical points of $8x^5 57x^4 24x^3 + 9$. $0, 6, \frac{-3}{10}$
- 116. List all the critical points of the function graphed below (portions of its tangent lines at x = -2, x = 1, x = 3, and x = 6 are shown as dashed lines).

Critical points are 2, 1, 4, 5.

117. Is the function

$$f(x) = x^8 - 6x^3 + 29x - 12$$

increasing, decreasing, or neither when x = -1? increasing

- 118. (a) On what (possibly infinite) interval or intervals is $2x^3 3x^2 12x$ decreasing? 12x - 1 - 1 - 12x = 12x decreasing?
 - (b) On what (possibly infinite) interval or intervals is $2x^3 3x^2 12x$ increasing? x < -1 or x > 2, which is $(-\infty, -1) \cup (2, \infty)$ in interval notation.
- 119. List all critical points of $f(x) = \frac{3}{4}x^4 7x^3 + 15x^2$ in the interval [-3, 3]. f'(c) = 0 for c = 0, 2, 5, but only 0 and 2 are in the interval [-3, 3].
- 120. For each graph below, is there a critical point at x = 0?

121. The derivative of

$$f(x) = \frac{4x+1}{3x^2-12}$$
 is $f'(x) = \frac{-4x^2-2x-16}{3x^4-24x^2+48}$.

Using this, find all the critical points of f(x).

 $-4x^2 - 2x - 16 = 0$ has no real solutions, but $3x^4 - 24x^2 + 48 = 0$ when x = 2, x = -2, so f' does not exist at those points.

The derivative of $\sin(x)$ is $\cos(x)$. The derivative of $\cos(x)$ is $-\sin(x)$. In symbols, $\frac{\mathrm{d}}{\mathrm{d}x} [\sin(x)] = \cos(x)$ and $\frac{\mathrm{d}}{\mathrm{d}x} [\cos(x)] = -\sin(x)$.

122. Give the derivative of $5\sin(x) + \frac{2}{3}\cos(x) - x^3 + 9$. $5\cos(x) - \frac{2}{3}\cos(x) - 3x^2$

123. Give an equation for the tangent line to $y = \sin(x)$ at $x = \frac{\pi}{3}$. $y = \frac{\sqrt{3}}{2} + \frac{1}{2}(x - \frac{\pi}{3})$

- 124. Find all the critical points of
 - (a) $f(x) = x^2 \cos(x)$. $f' = 2x + \sin(x) = 0$ means $\sin(x) = -2x$, which is true only for x = 0.
 - (b) $f(x) = x + 2\cos(x)$. $f' = 1 2\sin(x) = 0$ means $\sin(x) = \frac{1}{2}$, which is true for $x = \frac{1}{6}\pi + 2k\pi$ and $x = \frac{5}{6}\pi + 2k\pi$, where k can be any integer.
 - (c) $f(x) = 2x + \cos(x)$. $f' = 2 \sin(x) = 0$ when $\sin(x) = 2$, but this never happens for real values of x. So this function has no critical points.
 - (d) $f(x) = x^2 + x \sin(x)$. $f' = 2x + 1 \cos(x) = 0$ when the curves $y = \cos(x)$ and y = 2x + 1 intersect. This happens only at x = 0.
 - $\stackrel{\wedge}{\approx} (e) \quad f(x) = x^2 + x + \cos(x). \quad f' = 2x + 1 \sin(x) = 0 \text{ when the curves } y = \sin(x) \\ \text{and } y = 2x + 1 \text{ intersect. There is one point where this occurs, but there is no nice (technically, "closed form") formula for this value. It is approximately$ x = -0.335418.

To find the absolute extremes of a fn. on a closed, bounded interval:
① Find the critical points of f but ignore critical points outside the interval.
② Compute the value of f at the critical points and the endpoints of the interval.
③ The point(s) from ② with the largest f-value are absolute max, and point(s) with the smallest (i.e., most negative) f-value are absolute min.

125. On the interval [-6, 3], find the absolute extremes of

$$2x^3 - 21x^2 + 60x - 20.$$

 $f' = 6x^2 - 42x + 60$, so CP at 2 and 5. Ignore x = 5 bc it's not in [-6, 3]. Endpoints at -6 and 3.

x	f	
-6	-1568	abs. minimum
2	32	abs. maximum
3	25	(neither)

126. Find the absolute extremes of

$$x^4 - 4x^3 + 4x^2 - 14$$

on the interval [-3, 3].

 $\min(f = -14)$ at x = 0 and x = 2, max (f = 661) at x = -3 Note that this function has two absolute minima (the same minimum *f*-value at two *x*-values).

127. Find the absolute extremes of $x + 2\cos(x)$ with $0 \le x \le 2\pi$.

See **Task 124(b)** for the critical points. $x = \frac{\pi}{6}$ is the only CP in the interval $[0, 2\pi]$. Including the endpoints, we have

x	f	
0	2	abs. minimum
$\frac{\pi/6}{2\pi}$	$\frac{\pi}{6} + \sqrt{3} \approx 2.26$ $2 + 2\pi \approx 8.28$	(neither) abs. maximum

128. Find the absolute minimum and absolute maximum of

$$f(x) = \frac{3}{4}x^4 - 7x^3 + 15x^2$$

with $|x| \leq 3$.

See Task 119 for the CP: 0 and 2.

x	f	
-3	384.75	abs. maximum
0	0	abs. maximum
2	16	(neither)
3	6.75	(neither)

- 129. (a) Does the function $\frac{x-5}{x+2}$ have an absolute maximum on the interval [-8, 4]? no (Note: the EVT does not apply because the function is not continuous (in fact, not defined) at x = -2.)
 - (b) Does the function $\frac{x-5}{\cos(x)+2}$ have an absolute maximum on [-8, 4]? yes by the Extreme Value Theorem

130. Give the derivative of each of the following:

(a)	$\frac{1}{2}x^4 + 4\sin(x)$	\rightarrow	$2x^3 + 4\cos(x)$
(b)	$2x^2 + 4\cos(x)$	\rightarrow	$4x - 4\sin(x)$
(c)	$4x - 4\sin(x)$	\rightarrow	$4-4\cos(x)$
(d)	$4-4\cos(x)$	\rightarrow	$4\sin(x)$
(e)	$4\sin(x) \rightarrow$	$4 \mathrm{co}$	$\operatorname{os}(x)$

131. A car drives in a straight line for 10 hours with its position after t hours being $24t^2 - 2t^3$ kilometers from its initial position. How far away is the farthest point the car reaches in 10 hours, and when does this occur? 512 km away at t = 8 hr

- 132. For each function below, state whether its derivative can be found using *only* algebra, the Power Rule, the Constant Multiple Rule, and the Sum Rule. If so, give its derivative.
 - (a) $4x^2 27x$ has derivative 8x 27.
 - (b) $4x^2 27$ has derivative 8x. Note that $27 = 27x^0$, so we can use the Power Rule to get $27 \cdot 0x^{-1} = 0$ as its derivative.
 - (c) $\sqrt{16x}$ is equal to $4x^{1/2}$ and therefore has derivative $2x^{-1/2}$, or $\frac{2}{\sqrt{x}}$
 - (d) $(x+\sqrt{7})^2$ is equal to $x^2+2\sqrt{7}x+7$ and therefore has derivative $2x+2\sqrt{7}$.
 - (e) 2^{x+7} is equal to $128 \cdot 2^x$, but differentiating this requires another rule (the Exponential Rule).
 - (f) $\frac{5}{x}$ is equal to $5x^{-1}$ and therefore has derivative $-5x^{-2}$, or $\frac{-5}{x^2}$.
 - (g) $\frac{3x}{6x+15}$ requires the Quotient Rule (or the Chain and Product Rules toge-ther).
 - (h) $\frac{6x+15}{3x}$ is equal to $2+\frac{5}{x}$ and therefore has derivative $\frac{-5}{x^2}$.
- 133. Using the Product Rule, give the derivative of $5^x \cdot \sin(x)$. $5^x \cos(x) + 5^x \ln(x) \sin(x)$
- 134. Use the Product Rule (twice) to find the derivative of $x^6 \cdot \cos(x) \cdot 2^x$. $x^6 \cos(x) 2^x \ln(2) - x^6 \sin(x) 2^x + 6x^5 \cos(x) 2^x$ can be simplified to $x^5 2^x (x \cos(x) \ln(2) - x \sin(x) + 6)$

135. True or false?

- (a) (f+g)' = f' + g' true
- (b) $(f \cdot g)' = f' \cdot g'$ false A correct right-hand side could be parts (c) or (d).
- (c) $(f \cdot g)' = f'g + fg'$ true

- (d) $\frac{\mathrm{d}}{\mathrm{d}x}(fg) = f\frac{\mathrm{d}g}{\mathrm{d}x} + g\frac{\mathrm{d}f}{\mathrm{d}x}$ true
- (e) $(f \cdot g)' = g'f' + gf'$ false A correct right-hand side could be g'f + gf' without the extra ' in the first term g'f'.
- (f) (f/g)' = gf' fg' false A correct right-hand side could be $(gf' fg')/g^2$.

136. Match the functions (a)-(f) to their derivatives (I)-(VI).

